153 research outputs found

    Comparison of spatial downscaling methods of general circulation model results to study climate variability during the last glacial maximum

    Get PDF
    The extent to which climate conditions influenced the spatial distribution of hominin populations in the past is highly debated. General circulation models (GCMs) and archaeological data have been used to address this issue. Most GCMs are not currently capable of simulating past surface climate conditions with sufficiently detailed spatial resolution to distinguish areas of potential hominin habitat, however. In this paper, we propose a statistical downscaling method (SDM) for increasing the resolution of climate model outputs in a computationally efficient way. Our method uses a generalised additive model (GAM), calibrated over present-day climatology data, to statistically downscale temperature and precipitation time series from the outputs of a GCM simulating the climate of the Last Glacial Maximum (19 000–23 000 BP) over western Europe. Once the SDM is calibrated, we first interpolate the coarse-scale GCM outputs to the final resolution and then use the GAM to compute surface air temperature and precipitation levels using these interpolated GCM outputs and fine-resolution geographical variables such as topography and distance from an ocean. The GAM acts as a transfer function, capturing non-linear relationships between variables at different spatial scales and correcting for the GCM biases. We tested three different techniques for the first interpolation of GCM output: bilinear, bicubic and kriging. The resulting SDMs were evaluated by comparing downscaled temperature and precipitation at local sites with paleoclimate reconstructions based on paleoclimate archives (archaeozoological and palynological data) and the impact of the interpolation technique on patterns of variability was explored. The SDM based on kriging interpolation, providing the best accuracy, was then validated on present-day data outside of the calibration period. Our results show that the downscaled temperature and precipitation values are in good agreement with paleoclimate reconstructions at local sites, and that our method for producing fine-grained paleoclimate simulations is therefore suitable for conducting paleo-anthropological research. It is nonetheless important to calibrate the GAM on a range of data encompassing the data to be downscaled. Otherwise, the SDM is likely to overcorrect the coarse-grain data. In addition, the bilinear and bicubic interpolation techniques were shown to distort either the temporal variability or the values of the response variables, while the kriging method offered the best compromise. Since climate variability is an aspect of the environment to which human populations may have responded in the past, the choice of interpolation technique is therefore an important consideration.</p

    Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species

    Get PDF
    1. Generalised dissimilarity modelling (GDM) applies pairwise beta diversity as a measure of species turnover with the purpose of explaining changes in species composition under changing environments or along environmental gradients. Beta diversity only captures turnover across pairs of sites and, therefore, disproportionately represents turnover in rare species across communities. By contrast, zeta diversity, the average number of shared species across multiple sites, captures the full spectrum of rare, intermediate and widespread species as they contribute differently to compositional turnover. 2. We show how integrating zeta diversity into GDMs (which we term multi-site generalised dissimilarity modelling, MS-GDM), provides a more information rich approach to modelling how communities respond to environmental variation and change. We demonstrate the value of including zeta diversity in biodiversity assessment and modelling using BirdLife Australia Atlas data. Zeta diversity values for different numbers of sites (the order of zeta) are regressed against environmental differences and distance using two kinds of regressions: shape constrained additive models and a combination of I-splines and generalised linear models. 3. Applying MS-GDM to different orders of zeta revealed shifts in the importance of environmental variables in explaining species turnover, varying with the order of zeta and thus with the level of co-occurrence of the species and, by extension, their commonness and rarity. In particular, precipitation gradients emerged as drivers in the turnover of rare species, whereas temperature gradients were more important drivers of turnover in widespread species. 4. Appreciation of the factors that drive compositional turnover across multiple sites is necessary for accommodating the full spectrum of compositional turnover across rare to common species. This extends beyond understanding drivers for pairwise beta diversity only. MS-GDM provides a valuable addition to the toolkit of GDM, with further potential for survey gap analysis and prediction of species composition in unsampled sites

    A multi-site method to capture turnover in rare to common interactions in bipartite species networks

    Get PDF
    1. Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. 2. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. 3. We demonstrate the application and value of this method using a host–parasitoid system sampled along gradients of environmental modification. 4. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. 5. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained

    Decomposition-based mission planning for fixed-wing UAVs surveying in wind

    Get PDF
    This paper presents a new method for planning fixed-wing aerial survey paths that ensures efficient image coverage of a large complex agricultural field in the presence of wind. By decomposing any complex polygonal field into multiple convex polygons, the traditional back-and-forth boustrophedon paths can be used to ensure coverage of these decomposed regions. To decompose a complex field in an efficient and fast manner, a top-down recursive greedy approach is used to traverse the search space in order to minimise flight time of the survey. This optimisation can be computed fast enough for use in the field. As wind can severely affect flight time, it is included in the flight time calculation in a systematic way using a verified cost function that offer greatly reduced survey times in wind. Other improved cost functions have been developed to take into account real world problems, e.g. No Fly Zones, in addition to flight time. A number of real surveys are performed in order to show the flight time in wind model is accurate, to make further comparisons to previous techniques and to show that the proposed method works in real-world conditions providing total image coverage. A number of missions are generated and flown for real complex agricultural fields. In addition to this, the wind field around a survey area is measured from a multi-rotor carrying an ultrasonic wind speed sensor. This shows that the assumption of steady uniform wind holds true for the small areas and time scales of a Unmanned Aerial Vehicle (UAV) aerial survey.</div

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Robots That Do Not Avoid Obstacles

    Full text link
    The motion planning problem is a fundamental problem in robotics, so that every autonomous robot should be able to deal with it. A number of solutions have been proposed and a probabilistic one seems to be quite reasonable. However, here we propose a more adoptive solution that uses fuzzy set theory and we expose this solution next to a sort survey on the recent theory of soft robots, for a future qualitative comparison between the two.Comment: To appear in the Handbook of Nonlinear Analysis, Edt Th. Rassias, Springe

    Uniting statistical and individual-based approaches for animal movement modelling

    Get PDF
    <div><p>The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.</p></div

    Mechanistic reconciliation of community and invasion ecology

    Get PDF
    CITATION: Latombe, G., et al. 2021. Mechanistic reconciliation of community and invasion ecology. Ecosphere, 12(2):e03359, doi:10.1002/ecs2.3359.The original publication is available at https://esajournals.onlinelibrary.wiley.comCommunity and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process‐based framework synthesizing models across these two fields is lacking. Here we review 65 representative community and invasion models and propose a common framework articulated around six processes (dispersal, drift, abiotic interactions, within‐guild interactions, cross‐guild interactions, and genetic changes). The framework is designed to synthesize the content of the two fields, provide a general perspective on their development, and enable their comparison. The application of this framework and of a novel method based on network theory reveals some lack of coherence between the two fields, despite some historical similarities. Community ecology models are characterized by combinations of multiple processes, likely reflecting the search for an overarching theory to explain community assembly and structure, drawing predominantly on interaction processes, but also accounting largely for the other processes. In contrast, most models in invasion ecology invoke fewer processes and focus more on interactions between introduced species and their novel biotic and abiotic environment. The historical dominance of interaction processes and their independent developments in the two fields is also reflected in the lower level of coherence for models involving interactions, compared to models involving dispersal, drift, and genetic changes. It appears that community ecology, with a longer history than invasion ecology, has transitioned from the search for single explanations for patterns observed in nature to investigate how processes may interact mechanistically, thereby generating and testing hypotheses. Our framework paves the way for a similar transition in invasion ecology, to better capture the dynamics of multiple alien species introduced in complex communities. Reciprocally, applying insights from invasion to community ecology will help us understand and predict the future of ecological communities in the Anthropocene, in which human activities are weakening species’ natural boundaries. Ultimately, the successful integration of the two fields could advance a predictive ecology that is urgently required in a rapidly changing world.https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3359Publisher's versio

    Motion Planning via Manifold Samples

    Full text link
    We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with practical, considerably simpler sampling-based approaches that are appropriate for higher dimensions. In order to facilitate the transfer of advanced geometric algorithms into practical use, we suggest taking samples that are entire low-dimensional manifolds of the configuration space that capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms for analysis of low-dimensional manifolds then provide powerful primitive operations. The modular design of the framework enables independent optimization of each modular component. Indeed, we have developed, implemented and optimized a primitive operation for complete and exact combinatorial analysis of a certain set of manifolds, using arrangements of curves of rational functions and concepts of generic programming. This in turn enabled us to implement our framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles. We demonstrate that the integration of several carefully engineered components leads to significant speedup over the popular PRM sampling-based algorithm, which represents the more simplistic approach that is prevalent in practice. We foresee possible extensions of our framework to solving high-dimensional problems beyond motion planning.Comment: 18 page
    corecore